
Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 1 -

Priority Queues & Heaps

Chapter 8

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 2 -

Iterable

Collection

Abstract

Collection
Queue

List

Abstract

Queue

Priority

Queue Array

List

Abstract

List

Vector

Stack

Linked

List

Abstract

Sequential
List

Interface

Abstract Class

Class

The Java Collections Framework (Ordered Data Types)

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 3 -

The Priority Queue Class

Based on priority heap

Elements are prioritized based either on

natural order

a comparator, passed to the constructor.

Provides an iterator

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 4 -

Priority Queue ADT

A priority queue stores a collection of entries

Each entry is a pair (key, value)

Main methods of the Priority Queue ADT

insert(k, x) inserts an entry with key k and value x

removeMin() removes and returns the entry with smallest key

Additional methods

min() returns, but does not remove, an entry with smallest key

size(), isEmpty()

Applications:

Process scheduling

Standby flyers

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 5 -

Total Order Relations

Keys in a priority
queue can be
arbitrary objects on
which an order is
defined

Two distinct entries
in a priority queue
can have the same
key

Mathematical concept
of total order relation

Reflexive property:
x x

Antisymmetric property:
x y y x x = y

Transitive property:
 x y y z x z

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 6 -

Entry ADT

An entry in a priority
queue is simply a key-
value pair

Methods:

key(): returns the key for this
entry

value(): returns the value for
this entry

As a Java interface:

/**

 * Interface for a key-value

 * pair entry

 **/

public interface Entry {

 public Object key();

 public Object value();

}

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 7 -

Comparator ADT

A comparator encapsulates the action of comparing two
objects according to a given total order relation

A generic priority queue uses an auxiliary comparator

The comparator is external to the keys being compared

When the priority queue needs to compare two keys, it
uses its comparator

The primary method of the Comparator ADT:

compare(a, b):

Returns an integer i such that

i < 0 if a < b

i = 0 if a = b

i > 0 if a > b

an error occurs if a and b cannot be compared.

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 8 -

Example Comparators
/** Comparator for 2D points under the

standard lexicographic order. */

public class Lexicographic implements
Comparator {

 int xa, ya, xb, yb;

 public int compare(Object a, Object b)
throws ClassCastException {

 xa = ((Point2D) a).getX();

 ya = ((Point2D) a).getY();

 xb = ((Point2D) b).getX();

 yb = ((Point2D) b).getY();

 if (xa != xb)

 return (xb - xa);

 else

 return (yb - ya);

 }

}

/** Class representing a point in the
plane with integer coordinates */

public class Point2D {

 protected int xc, yc; // coordinates

 public Point2D(int x, int y) {

 xc = x;

 yc = y;

 }

 public int getX() {

 return xc;

 }

 public int getY() {

 return yc;

 }

}

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 9 -

Sequence-based Priority Queue

Implementation with an

unsorted list

Performance:

insert takes O(1) time since

we can insert the item at

the beginning or end of the

sequence

removeMin and min take

O(n) time since we have to

traverse the entire

sequence to find the

smallest key

Implementation with a

sorted list

Performance:

insert takes O(n) time since

we have to find the right

place to insert the item

removeMin and min take

O(1) time, since the smallest

key is at the beginning

4 5 2 3 1 1 2 3 4 5

Is this tradeoff inevitable?

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 10 -

Heaps

Goal:

O(log n) insertion

O(log n) removal

Remember that O(log n) is almost as good as O(1)!

e.g., n = 1,000,000,000 log n 30

There are min heaps and max heaps. We will assume

min heaps.

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 11 -

Min Heaps

A min heap is a binary tree storing keys at its nodes and

satisfying the following properties:

Heap-order: for every internal node v other than the root

key(v) key(parent(v))

(Almost) complete binary tree: let h be the height of the heap

for i = 0, … , h 1, there are 2i nodes of depth i

at depth h 1

the internal nodes are to the left of the external nodes

Only the rightmost internal node may have a single child 2

6 5

7 9

The last node of a heap is the

rightmost node of depth h

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 12 -

Height of a Heap

Theorem: A heap storing n keys has height O(log n)

 Proof: (we apply the complete binary tree property)

Let h be the height of a heap storing n keys

Since there are 2i keys at depth i = 0, … , h 1 and at least one key

at depth h, we have n 1 + 2 + 4 + … + 2h 1 + 1

Thus, n 2h , i.e., h log n

1

2

2h 1

1

keys

0

1

h 1

h

depth

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 13 -

Heaps and Priority Queues

We can use a heap to implement a priority queue

We store a (key, element) item at each internal node

We keep track of the position of the last node

For simplicity, we will typically show only the keys in the

pictures

(2, Sue)

(6, Mark) (5, Pat)

(9, Jeff) (7, Anna)

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 14 -

Insertion into a Heap

Method insert of the

priority queue ADT involves

inserting a new entry with
key k into the heap

The insertion algorithm

consists of two steps

Store the new entry at the

next available location

Restore the heap-order

property

2

6 5

7 9

new node

2

6 5

7 9 1

z

z

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 15 -

Upheap

After the insertion of a new key k, the heap-order property may be

violated

Algorithm upheap restores the heap-order property by swapping k

along an upward path from the insertion node

Upheap terminates when the key k reaches the root or a node

whose parent has a key smaller than or equal to k

Since a heap has height O(log n), upheap runs in O(log n) time

2

1 5

7 9 6

1

2 5

7 9 6

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 16 -

Removal from a Heap

Method removeMin of the
priority queue ADT
corresponds to the removal of
the root key from the heap

The removal algorithm
consists of three steps

Replace the root key with the
key of the last node w

Remove w

Restore the heap-order property

2

6 5

7 9

last node

w

7

6 5

9

w

new last node

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 17 -

Downheap

After replacing the root key with the key k of the last node, the

heap-order property may be violated

Algorithm downheap restores the heap-order property by

swapping key k along a downward path from the root

Note that there are, in general, many possible downward paths –

which one do we choose?

7

6 5

9

w

? ?

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 18 -

Downheap

We select the downward path through the minimum-key nodes.

Downheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to k

Since a heap has height O(log n), downheap runs in O(log n) time

7

6 5

9

w

5

6 7

9

w

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 19 -

Array-based Heap Implementation

We can represent a heap with n keys
by means of an array of length n + 1

Links between nodes are not explicitly
stored

The cell at rank 0 is not used

The root is stored at rank 1.

For the node at rank i

the left child is at rank 2i

the right child is at rank 2i + 1

the parent is at rank floor(i/2)

if 2i + 1 > n, the node has no right child

if 2i > n, the node is a leaf

2

6 5

7 9

2 5 6 9 7

1 2 3 4 5 0

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 20 -

Merging Two Heaps

We are given two

heaps and a new key k

We create a new heap

with the root node

storing k and with the
two heaps as subtrees

We perform downheap

to restore the heap-

order property

7

3

5 8

2

6 4

3

5 8

2

6 4

2

3

5 8

4

6 7

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 21 -

We can construct a heap

storing n keys using a

bottom-up construction with
log n phases

In phase i, pairs of heaps

with 2i 1 keys are merged

into heaps with 2i+1 1 keys

Bottom-up Heap Construction

2i 1 2i 1

2i+1 1

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 22 -

Example

15 16 12 4 7 6 20 23

25

15 16

5

12 4

11

7 6

27

20 23

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 23 -

Example (contd.)

25

15 16

5

12 4

11

9 6

27

20 23

15

25 16

4

12 5

6

9 11

23

20 27

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 24 -

Example (contd.)

7

15

25 16

4

12 5

8

6

9 11

23

20 27

4

15

25 16

5

12 7

6

8

9 11

23

20 27

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 25 -

Example (end)

4

15

25 16

5

12 7

10

6

8

9 11

23

20 27

5

15

25 16

7

12 10

4

6

8

9 11

23

20 27

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 26 -

Analysis

We visualize the worst-case time of a downheap with a proxy path that

goes first right and then repeatedly goes left until the bottom of the

heap (this path may differ from the actual downheap path)

Since each node is traversed by at most two proxy paths, the total

number of nodes of the proxy paths is O(n)

Thus, bottom-up heap construction runs in O(n) time

Bottom-up heap construction is faster than n successive insertions

(running time ?).

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 27 -

Bottom-Up Heap Construction

Uses downHeap to reorganize the tree from bottom to

top to make it a heap.

Can be written concisely in either recursive or iterative

form.

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 28 -

Iterative MakeHeap

MakeHeap(A,n)

<pre-cond>:A[1…n] is a balanced binary tree

<post-cond>:A[1…n] is a heap

for i n / 2 downto 1

< LI >: All subtrees rooted at i + 1…n are heaps

DownHeap(A, i,n)

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 29 -

Recursive MakeHeap

Get help from friends

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 30 -

MakeHeap(A, i,n)

<pre-cond>:A[i…n] is a balanced binary tree

<post-cond>:The subtree rooted at i is a heap

if i n / 4 then

MakeHeap(A,LEFT (i),n)

MakeHeap(A,RIGHT (i),n)

Downheap(A, i,n)

Recursive MakeHeap

T(n) = 2T(n/2) + log(n)

Running time:

= (n)
i

n

Invoke as MakeHeap (A, 1, n)

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 31 -

Iterative vs Recursive MakeHeap

Recursive and Iterative MakeHeap do essentially the

same thing: Heapify from bottom to top.

Difference:

Recursive is “depth-first”

Iterative is “breadth-first”

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 32 -

Adaptable Priority

Queues

3 a

5 g 4 e

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 33 -

Recall the Entry and Priority Queue ADTs

An entry stores a (key,
value) pair within a data
structure

Methods of the entry
ADT:

key(): returns the key
associated with this
entry

value(): returns the value
paired with the key
associated with this
entry

Priority Queue ADT:

insert(k, x)
inserts an entry with
key k and value x

removeMin()
removes and returns
the entry with
smallest key

min()
returns, but does not
remove, an entry
with smallest key

size(), isEmpty()

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 34 -

Motivating Example

Suppose we have an online trading system where orders to

purchase and sell a given stock are stored in two priority queues

(one for sell orders and one for buy orders) as (p,s) entries:

The key, p, of an order is the price

The value, s, for an entry is the number of shares

A buy order (p,s) is executed when a sell order (p’,s’) with price

p’<p is added (the execution is complete if s’>s)

A sell order (p,s) is executed when a buy order (p’,s’) with price

p’>p is added (the execution is complete if s’>s)

What if someone wishes to cancel their order before it

executes?

What if someone wishes to update the price or number of

shares for their order?

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 35 -

Additional Methods of the Adaptable Priority Queue ADT

remove(e): Remove from P and return entry e.

replaceKey(e,k): Replace with k and return the old key;

an error condition occurs if k is invalid (that is, k cannot

be compared with other keys).

replaceValue(e,x): Replace with x and return the old

value.

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 36 -

Example

Operation Output P

insert(5,A) e1 (5,A)

insert(3,B) e2 (3,B),(5,A)

insert(7,C) e3 (3,B),(5,A),(7,C)

min() e2 (3,B),(5,A),(7,C)

key(e2) 3 (3,B),(5,A),(7,C)

remove(e1) e1 (3,B),(7,C)

replaceKey(e2,9) 3 (7,C),(9,B)

replaceValue(e3,D) C (7,D),(9,B)

remove(e2) e2 (7,D)

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 37 -

Locating Entries

In order to implement the operations remove(k),

replaceKey(e), and replaceValue(k), we need fast ways

of locating an entry e in a priority queue.

We can always just search the entire data structure to

find an entry e, but there are better ways for locating
entries.

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 38 -

Location-Aware Entries

A locator-aware entry identifies and tracks the

location of its (key, value) object within a data

structure

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 39 -

List Implementation

A location-aware list entry is an object storing

key

value

position (or rank) of the item in the list

In turn, the position (or array cell) stores the entry

Back pointers (or ranks) are updated during swaps

trailer header nodes/positions

entries

2 c 4 a 5 d 8 b

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 40 -

Heap Implementation

A location-aware heap

entry is an object storing

key

value

position of the entry in the

underlying heap

In turn, each heap position

stores an entry

Back pointers are updated

during entry swaps

4 a

2 d

6 b

8 g 5 e 9 c

Last Updated: 1/28/10 10:10 AM
CSE 2011

Prof. J. Elder
- 41 -

Performance

Times better than those achievable without location-aware

entries are highlighted in red:

Method Unsorted List Sorted List Heap

size, isEmpty O(1) O(1) O(1)

insert O(1) O(n) O(log n)

min O(n) O(1) O(1)

removeMin O(n) O(1) O(log n)

remove O(1) O(1) O(log n)

replaceKey O(1) O(n) O(log n)

replaceValue O(1) O(1) O(1)

