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Priority Queues & Heaps 

Chapter 8 
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The Priority Queue Class 

Based on priority heap 

Elements are prioritized based either on 

natural order 

a comparator, passed to the constructor. 

Provides an iterator 
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Priority Queue ADT  

A priority queue stores a collection of entries 

Each entry is a pair (key, value) 

Main methods of the Priority Queue ADT 

insert(k, x) inserts an entry with key k and value x 

removeMin() removes and returns the entry with smallest key 

Additional methods 

min() returns, but does not remove, an entry with smallest key 

size(), isEmpty() 

Applications: 

Process scheduling 

Standby flyers 
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Total Order Relations  

Keys in a priority 
queue can be 
arbitrary objects on 
which an order is 
defined 

Two distinct entries 
in a priority queue 
can have the same 
key 

Mathematical concept 
of total order relation  

Reflexive property: 
x  x 

Antisymmetric property: 
x  y  y  x  x = y 

Transitive property: 
 x  y  y  z  x  z 
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Entry ADT 

An entry in a priority 
queue is simply a key-
value pair 

Methods: 

key(): returns the key for this 
entry 

value(): returns the value for 
this entry 

As a Java interface: 

/**  

  * Interface for a key-value 

  * pair entry  

 **/ 

public interface  Entry  { 

    public  Object key(); 

    public  Object value(); 

} 



Last Updated:  1/28/10 10:10 AM 
CSE 2011 

Prof. J. Elder 
- 7 - 

Comparator ADT 

A comparator encapsulates the action of comparing two 
objects according to a given total order relation 

A generic priority queue uses an auxiliary comparator 

The comparator is external to the keys being compared 

When the priority queue needs to compare two keys, it 
uses its comparator 

The primary method of the Comparator ADT: 

compare(a, b):  

Returns an integer i such that  

i < 0 if a < b 

i = 0 if a = b 

i > 0 if a > b 

an error occurs if a and b cannot be compared. 
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Example Comparators 
/** Comparator for 2D points under the 

standard lexicographic order. */ 

public class  Lexicographic  implements  
Comparator  { 

    int  xa, ya, xb, yb; 

    public int  compare(Object a, Object b)  
throws  ClassCastException  { 

       xa = ((Point2D) a).getX(); 

       ya = ((Point2D) a).getY(); 

       xb = ((Point2D) b).getX(); 

       yb = ((Point2D) b).getY(); 

       if  (xa != xb) 

  return  (xb - xa); 

       else 

  return  (yb - ya); 

   } 

} 

/** Class representing a point in the 
plane with integer coordinates */ 

public class  Point2D  { 

    protected int xc, yc; // coordinates 

    public  Point2D(int  x,  int  y)  { 

       xc = x; 

       yc = y; 

   } 

    public int  getX()  {  

  return  xc;   

    } 

    public int  getY()  {  

  return  yc;   

    } 

} 
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Sequence-based Priority Queue 

Implementation with an 

unsorted list 

Performance: 

insert takes O(1) time since 

we can insert the item at 

the beginning or end of the 

sequence 

removeMin and min take 

O(n) time since we have to 

traverse the entire 

sequence to find the 

smallest key  

Implementation with a 

sorted list 

Performance: 

insert takes O(n) time since 

we have to find the right 

place to insert the item 

removeMin and min take 

O(1) time, since the smallest 

key is at the beginning 

4 5 2 3 1 1 2 3 4 5 

Is this tradeoff inevitable? 
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Heaps 

Goal: 

O(log n) insertion 

O(log n) removal 

Remember that O(log n) is almost as good as O(1)! 

e.g., n = 1,000,000,000  log n  30 

There are min heaps and max heaps.  We will assume 

min heaps. 
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Min Heaps  

A min heap is a binary tree storing keys at its nodes and 

satisfying the following properties: 

Heap-order: for every internal node v other than the root 

key(v)  key(parent(v)) 

(Almost) complete binary tree: let h be the height of the heap 

for i = 0, … , h  1, there are 2i nodes of depth i 

at depth h  1 

the internal nodes are to the left of the external nodes 

Only the rightmost internal node may have a single child 2 

6 5 

7 9 

The last node of a heap is the 

rightmost node of depth h 
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Height of a Heap  

Theorem: A heap storing n keys has height O(log n) 

 Proof: (we apply the complete binary tree property) 

Let h be the height of a heap storing n keys 

Since there are 2i keys at depth i = 0, … , h  1 and at least one key 

at depth h, we have n  1 + 2 + 4 + … + 2h 1  + 1  

Thus, n  2h , i.e., h  log n 

1 

2 

2h 1 

1 

keys 

0 

1 

h 1 

h 

depth 
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Heaps and Priority Queues 

We can use a heap to implement a priority queue 

We store a (key, element) item at each internal node 

We keep track of the position of the last node 

For simplicity, we will typically show only the keys in the 

pictures 

(2, Sue) 

(6, Mark) (5, Pat) 

(9, Jeff) (7, Anna) 
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Insertion into a Heap  

Method insert of the 

priority queue ADT involves 

inserting a new entry with 
key k into the heap 

The insertion algorithm 

consists of two steps 

Store the new entry at the 

next available location 

Restore the heap-order 

property  

2 

6 5 

7 9 

new node 

2 

6 5 

7 9 1 

z 

z 
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Upheap 

After the insertion of a new key k, the heap-order property may be 

violated 

Algorithm upheap restores the heap-order property by swapping k 

along an upward path from the insertion node 

Upheap terminates when the key k reaches the root or a node 

whose parent has a key smaller than or equal to k  

Since a heap has height O(log n), upheap runs in O(log n) time 

2 

1 5 

7 9 6 

1 

2 5 

7 9 6 
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Removal from a Heap  

Method removeMin of the 
priority queue ADT 
corresponds to the removal of 
the root key from the heap 

The removal algorithm 
consists of three steps 

Replace the root key with the 
key of the last node w 

Remove w  

Restore the heap-order property  

2 

6 5 

7 9 

last node 

w 

7 

6 5 

9 

w 

new last node 
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Downheap 

After replacing the root key with the key k of the last node, the 

heap-order property may be violated 

Algorithm downheap restores the heap-order property by 

swapping key k along a downward path from the root 

Note that there are, in general, many possible downward paths – 

which one do we choose? 

7 

6 5 

9 

w 

? ? 
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Downheap 

We select the downward path through the minimum-key nodes. 

Downheap terminates when key k reaches a leaf or a node whose 

children have keys greater than or equal to k  

Since a heap has height O(log n), downheap runs in O(log n) time 

7 

6 5 

9 

w 

5 

6 7 

9 

w 
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Array-based Heap Implementation  

We can represent a heap with n keys 
by means of an array of length n + 1 

Links between nodes are not explicitly 
stored 

The cell at rank 0 is not used 

The root is stored at rank 1. 

For the node at rank i 

the left child is at rank 2i 

the right child is at rank 2i + 1 

the parent is at rank floor(i/2) 

if 2i + 1 > n, the node has no right child 

if 2i > n, the node is a leaf 

2 

6 5 

7 9 

2 5 6 9 7 

1 2 3 4 5 0 



Last Updated:  1/28/10 10:10 AM 
CSE 2011 

Prof. J. Elder 
- 20 - 

Merging Two Heaps 

We are given two 

heaps and a new key k 

We create a new heap 

with the root node 

storing k and with the 
two heaps as subtrees 

We perform downheap 

to restore the heap-

order property  

7 

3 

5 8 

2 

6 4 

3 

5 8 

2 

6 4 

2 

3 

5 8 

4 

6 7 
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We can construct a heap 

storing n keys using a 

bottom-up construction with 
log n phases 

In phase i, pairs of heaps 

with 2i 1 keys are merged 

into heaps with 2i+1 1 keys 

Bottom-up Heap Construction  

2i 1 2i 1 

2i+1 1 
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Example 

15 16 12 4 7 6 20 23 

25 

15 16 

5 

12 4 

11 

7 6 

27 

20 23 
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Example (contd.) 

25 

15 16 

5 

12 4 

11 

9 6 

27 

20 23 

15 

25 16 

4 

12 5 

6 

9 11 

23 

20 27 
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Example (contd.) 

7 

15 

25 16 

4 

12 5 

8 

6 

9 11 

23 

20 27 

4 

15 

25 16 

5 

12 7 

6 

8 

9 11 

23 

20 27 
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Example (end) 

4 

15 

25 16 

5 

12 7 

10 

6 

8 

9 11 

23 

20 27 

5 

15 

25 16 

7 

12 10 

4 

6 

8 

9 11 

23 

20 27 
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Analysis 

We visualize the worst-case time of a downheap with a proxy path that 

goes first right and then repeatedly goes left until the bottom of the 

heap (this path may differ from the actual downheap path) 

Since each node is traversed by at most two proxy paths, the total 

number of nodes of the proxy paths is O(n)  

Thus, bottom-up heap construction runs in O(n) time  

Bottom-up heap construction is faster than n successive insertions 

(running time ?). 
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Bottom-Up Heap Construction 

Uses downHeap to reorganize the tree from bottom to 

top to make it a heap. 

Can be written concisely in either recursive or iterative 

form. 
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Iterative MakeHeap 

   

MakeHeap(A,n)

<pre-cond>:A[1…n] is a balanced binary tree

<post-cond>:A[1…n] is a heap

for i n / 2  downto 1

< LI >: All subtrees rooted at i + 1…n are heaps

DownHeap(A, i,n)
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Recursive MakeHeap 

Get help from friends 
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MakeHeap(A, i,n)

<pre-cond>:A[i…n] is a balanced binary tree

<post-cond>:The subtree rooted at i  is a heap

if i n / 4  then

MakeHeap(A,LEFT (i),n)

MakeHeap(A,RIGHT (i),n)

Downheap(A, i,n)

Recursive MakeHeap 

T(n) = 2T(n/2) + log(n) 

Running time: 

= (n) 
i 

n 

Invoke as MakeHeap (A, 1, n) 
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Iterative  vs Recursive MakeHeap 

Recursive and Iterative MakeHeap do essentially the 

same thing:  Heapify from bottom to top. 

Difference: 

Recursive is “depth-first” 

Iterative is “breadth-first” 
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Adaptable Priority 

Queues 

3 a 

5 g 4 e 
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Recall the Entry and Priority Queue ADTs  

An entry stores a (key, 
value) pair within a data 
structure 

Methods of the entry 
ADT: 

key(): returns the key 
associated with this 
entry 

value(): returns the value 
paired with the key 
associated with this 
entry 

Priority Queue ADT: 

insert(k, x) 
inserts an entry with 
key k and value x 

removeMin() 
removes and returns 
the entry with 
smallest key 

min() 
returns, but does not 
remove, an entry 
with smallest key 

size(), isEmpty() 
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Motivating Example 

Suppose we have an online trading system where orders to 

purchase and sell a given stock are stored in two priority queues 

(one for sell orders and one for buy orders) as (p,s) entries: 

The key, p, of an order is the price 

The value, s, for an entry is the number of shares 

A buy order (p,s) is executed when a sell order (p’,s’) with price 

p’<p is added (the execution is complete if s’>s) 

A sell order (p,s) is executed when a buy order (p’,s’) with price 

p’>p is added (the execution is complete if s’>s) 

What if someone wishes to cancel their order before it 

executes? 

What if someone wishes to update the price or number of 

shares for their order? 
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Additional Methods of the Adaptable Priority Queue ADT  

remove(e): Remove from P and return entry e.   

replaceKey(e,k): Replace with k and return the old key; 

an error condition occurs if k is invalid (that is, k cannot 

be compared with other keys).   

replaceValue(e,x): Replace with x and return the old 

value.   



Last Updated:  1/28/10 10:10 AM 
CSE 2011 

Prof. J. Elder 
- 36 - 

Example 

Operation Output P

insert(5,A)    e1 (5,A)   

insert(3,B)    e2 (3,B),(5,A)   

insert(7,C)    e3 (3,B),(5,A),(7,C) 

min()     e2 (3,B),(5,A),(7,C) 

key(e2)    3 (3,B),(5,A),(7,C) 

remove(e1)    e1 (3,B),(7,C) 

replaceKey(e2,9)   3 (7,C),(9,B)   

replaceValue(e3,D)   C (7,D),(9,B)   

remove(e2)    e2 (7,D)   
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Locating Entries 

In order to implement the operations remove(k), 

replaceKey(e), and replaceValue(k), we need fast ways 

of locating an entry e in a priority queue. 

We can always just search the entire data structure to 

find an entry e, but there are better ways for locating 
entries. 
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Location-Aware Entries 

A locator-aware entry identifies and tracks the 

location of its (key, value) object within a data 

structure 
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List Implementation 

A location-aware list entry is an object storing 

key 

value 

position (or rank) of the item in the list 

In turn, the position (or array cell) stores the entry 

Back pointers (or ranks) are updated during swaps 

trailer header nodes/positions 

entries 

2 c 4 a 5 d 8 b 
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Heap Implementation 

A location-aware heap 

entry is an object storing 

key 

value 

position of the entry in the 

underlying heap 

In turn, each heap position 

stores an entry 

Back pointers are updated 

during entry swaps 

4 a 

2 d 

6 b 

8 g 5 e 9 c 
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Performance 

Times better than those achievable without location-aware 

entries are highlighted in red: 

Method   Unsorted List  Sorted List  Heap   

size, isEmpty   O(1)   O(1)   O(1)   

insert    O(1)   O(n)   O(log n) 

min    O(n)   O(1)   O(1)   

removeMin   O(n)   O(1)   O(log n) 

remove   O(1)   O(1)   O(log n) 

replaceKey   O(1)   O(n)   O(log n) 

replaceValue   O(1)   O(1)   O(1) 


