Priority Queues & Heaps

Chapter 8

CSE 2011
UYNQBS.KE ' Bt J. Sl =1l= Last Updated: 1/28/10 10:10 AM

VVVVVVVVVV

The Java Collections Framework (Ordered Data Types)

_I Interface | Iterablel
J Abstract Class | CoIIeTction |
_I Class
Abstract
&u/?u_el | Collection

Abstract
List

Abstract
Queue |

| Priority | Abstract
Queue Sequential | Array ‘ Ml

List List)
/v | ' ’ Stack |
4
‘ Linked |
List
YORK ' CSE 2011 =7 = Last Updated: 1/28/10 10:10 AM

““““““““ : Prof. J. Elder

VVVVVVVVVV

The Priority Queue Class

» Based on priority heap

» Elements are prioritized based either on
O natural order
O acomparator, passed to the constructor.

> Provides an iterator

CSE 2011
YORKB _3- Last Updated: 1/28/10 10:10 AM
““““““““ : Prof. J. Elder

VVVVVVVVVV

Priority Queue AD

» A priority queue stores a collection of entries
» Each entry is a pair (key, value)
» Main methods of the Priority Queue ADT

O insert(k, x) inserts an entry with key k and value x

O removeMin() removes and returns the entry with smallest key
» Additional methods

O min() returns, but does not remove, an entry with smallest key

O size(), isEmpty()
» Applications:

U Process scheduling

O Standby flyers

CSE 2011
YOR I _4- Last Updated: 1/28/10 10:10 AM
““““““““ : Prof. J. Elder

UNIVER SITY

otal Order Relations

» Keys In a priority » Mathematical concept
gueue can be of total order relation <
arb_'trary ObJeCtS_ an JReflexive property:
which an order Is X < X
defined . .

JAntisymmetric property:
> Two distinct entries X<y Aysx=2>x=y
In a priority queue dTransitive property:
can have the same X<y Ay<z=>x<z
key

CSE 2011
YORK ' -5- Last Updated: 1/28/10 10:10 AM
““““““““ Prof. J. Elder

Entry ADT

» An entry in a priority » As a Java interface:
gueue is simply a key- i
value pair
* Interface for a key-value
» Methods: * pair entry
d key(): returns the key for this x|
entry

lic interf Entr
 value(): returns the value for public interface try {

this entry public Object key();
public Object value();
}
YORKJ| cse20u G- Last Updated: 1/28/10 10:10 AM

“““““““““ Prof. J. Elder

Comparator AD

» A comparator encapsulates the action of comparing two
objects according to a given total order relation

» A generic priority gueue uses an auxiliary comparator
» The comparator is external to the keys being compared

» When the priority queue needs to compare two keys, it
uses its comparator

» The primary method of the Comparator ADT:
U compare(a, b):
<> Returns an integer i such that
I<Oifa<b
i=0ifa=b
I>0ifa>b

an error occurs if a and b cannot be compared.

CSE 2011
YORK ' -7 - Last Updated: 1/28/10 10:10 AM
““““““““ Prof. J. Elder

Example Comparators

[** Comparator for 2D points under the [** Class representing a point in the
standard lexicographic order. */ plane with integer coordinates */
public class Lexicographic implements public class Point2D {
_ AL o protected int xc, yc; // coordinates
Int xa, ya, xb, yb; oublic Point2D(int x, int y) {
public int compare(Object a, Object b) o
throws ClassCastException { e =
xa = ((Point2D) a).getX(); yc=y,
ya = ((Point2D) a).getY(); }
xb = ((Point2D) b).getX(); public int getX() {
yb = ((Point2D) b).getY(); return xc;
it (xa!=xb) }
return (xb - xa): public int getY() {
else return yc;
return (yb - ya); }
) }
}
UYNOEIR{SKE ' CSE 201 -8- Last Updated: 1/28/10 10:10 AM

Prof. J. Elder

UNIVER SITY

Sequence-based Priority Queue

» Implementation with an » Implementation with a
unsorted list sorted list
» Performance: » Performance:
O insert takes O(1) time since O insert takes O(n) time since
we can insert the item at we have to find the right
the beginning or end of the place to insert the item
n . .
sequence O removeMin and min take
d removeMin and min take O(1) time, since the smallest
O(n) time since we have to key is at the beginning

traverse the entire

sequence to find the | | |
smallest key Is this tradeoff inevitable?

CSE 2011
YORKRE| _9- Last Updated: 1/28/10 10:10 AM
““““““““ : Prof. J. Elder

lllllllllll

Heaps

» Goal:
[O(log n) insertion
4 O(log n) removal

» Remember that O(log n) is almost as good as O(1)!
de.g., n =1,000,000,000 = log n = 30

» There are min heaps and max heaps. We will assume
min heaps.

CSE 2011
UYNOEBSKE ' Prof. J. Elder - 10 - Last Updated: 1/28/10 10:10 AM

Min Heaps

» A min heap Is a binary tree storing keys at its nodes and
satisfying the following properties:

 Heap-order: for every internal node v other than the root
<> key(v) = key(parent(v))

O (Almost) complete binary tree: let h be the height of the heap
<-fori=0, ..., h-1, there are 2' nodes of depth i
<-atdepthh-1

the internal nodes are to the left of the external nodes

Only the rightmost internal node may have a single child

A

0 The last node of a heap is the
rightmost node of depth h

CSE 2011
UYNQBSKE ' Prof. J. Elder -11 - Last Updated: 1/28/10 10:10 AM

lllllllllll

Height of a Heap

» Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)
U Let h be the height of a heap storing n keys

a Since there are 2! keys at depthi=0, ..., h—1 and at least one key
atdepthh,wehaven=1+2+4+..+2M +1

A Thus,n=2",i.e.,h<logn

depth keys

CSE 2011
UYNQBSKE ' Prof. J. Elder -12 - Last Updated: 1/28/10 10:10 AM

lllllllllll

Heaps and Priority Queues

» We can use a heap to implement a priority queue
» We store a (key, element) item at each internal node
» We keep track of the position of the last node

» For simplicity, we will typically show only the keys in the
pictures

CSE 2011
UYNQBSI,(E ' Prof. J. Elder -13 - Last Updated: 1/28/10 10:10 AM

VVVVVVVVVV

Insertion into a Heap

» Method insert of the
priority queue ADT involves
Inserting a new entry with
key k into the heap

» The insertion algorithm
consists of two steps

] Store the new entry at the
next available location

] Restore the heap-order
property

YORK ' CSE 2011 e

“““““““““ Prof. J. Elder

lllllllllll

N

new node

Last Updated: 1/28/10 10:10 AM

Upheap
» After the insertion of a new key k, the heap-order property may be

violated

» Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node

» Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k

» Since a heap has height O(log n), upheap runs in O(log n) time

e B

CSE 2011
UYNQBSKE ' Prof. J. Elder -15- Last Updated: 1/28/10 10:10 AM

Removal from a Heap

» Method removeMin of the
priority queue ADT
corresponds to the removal of

the root key from the heap "

» The removal algorithm \

consists of three steps
L Replace the root key with the eIl IO
key of the last node w
L Remove w

L Restore the heap-order property

new last node

CSE 2011
UYNQBSKE ' Prof. J. Elder -16 - Last Updated: 1/28/10 10:10 AM

Downheap

» After replacing the root key with the key k of the last node, the
heap-order property may be violated

» Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

» Note that there are, in general, many possible downward paths —
which one do we choose?

? ”

YOR l CSE 2011

,,,,,,,,, : Prof. J. Elder -17 - Last Updated: 1/28/10 10:10 AM

Downheap

» We select the downward path through the minimum-key nodes.

» Downheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k

» Since a heap has height O(log n), downheap runs in O(log n) time

YOR l CSE 2011

SniveRsi . Prof. J. Elder -18 - Last Updated: 1/28/10 10:10 AM

Array-based Heap Implementation

» We can represent a heap with n keys
by means of an array of length n+1

» Links between nodes are not explicitly
stored

» The cell at rank 0 is not used

A\

The root is stored at rank 1.

» For the node at rank |
[the left child is at rank 2i
O the right child is at rank 2i + 1
[the parent is at rank floor(i/2)

d if 21 + 1 > n, the node has no right child

4 if 21 > n, the node is a leaf

CSE 2011
UYNQBSI,(E ' Prof. J. Elder -19 - Last Updated: 1/28/10 10:10 AM

Merging Two Heaps

e o o

» We are given two
heaps and a new key k

» We create a new heap
with the root node
storing k and with the
two heaps as subtrees

» We perform downheap
to restore the heap-
order property

YORK

IIIIIIIIII
lllllllllll

' CSE 2011
Prof. J. Elder

-20 -

Last Updated: 1/28/10 10:10 AM

Bottom-up Heap Construction

» We can construct a heap
storing n keys using a
bottom-up construction with
log n phases

» In phase I, pairs of heaps
with 2'-1 keys are merged
into heaps with 21-1 keys

YORK ' CSE 2011

_ il -
ER ST Prof. J. Elder

A A

4

2i+1_1

Last Updated: 1/28/10 10:10 AM

— ——
B _—
—_— _——
— —_—
—_— —_—
—_— —_—
—_— —_—
—_—
—_—

—_—

o e e e
® © 0 ® 0 o o v

—_— —_—
— — i
e ———
—_—— —_——
p— —_—
—_—
_——

CSE 2011
YORK ' -22 - Last Updated: 1/28/10 10:10 AM

UNIVERSITE
S

¢ Prof. J. Elder

1T
T

Example (contd.)

p— ———
—_— —_—
—_— _——
—_— —_—
—_— —_
——

CSE 2011
UYNQBS,KE ' -23- Last Updated: 1/28/10 10:10 AM

Prof. J. Elder

VVVVVVVVVV

Example (contd.)

—_—
—_——
—_——
—_—
—_——

L
——
_—
—_—
_—
—_—

CSE 2011
UYNQBSKE ' Prof. J. Elder -24 - Last Updated: 1/28/10 10:10 AM

VVVVVVVVVV

Example (end)

CSE 2011
UYNQBSKE ' Prof. J. Elder -25- Last Updated: 1/28/10 10:10 AM

VVVVVVVVVV

Analysis

» We visualize the worst-case time of a downheap with a proxy path that
goes first right and then repeatedly goes left until the bottom of the
heap (this path may differ from the actual downheap path)

» Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

» Thus, bottom-up heap construction runs in O(n) time

» Bottom-up heap construction is faster than n successive insertions
(running time ?).

~
—~ -
-~

// / //
\ K \ '/ \ ¥ \ \
CSE 2011
YOR ' - 26 - Last Updated: 1/28/10 10:10 AM
NI vERSIT ¢ Prof. J. Elder

SITY

Bottom-Up Heap Construction

» Uses downHeap to reorganize the tree from bottom to
top to make it a heap.

» Can be written concisely in either recursive or iterative
form.

CSE 2011
UYNQBSKE ' Prof. J. Elder - 27 - Last Updated: 1/28/10 10:10 AM

lterative MakeHeap

MakeHeap(A4, n)

<pre-cond>:A[1...n] is a balanced binary tree
<post-cond>:A[1...n] is a heap

for i « {n/ ZJ downto 1

< LI >: All subtrees rooted at i +1...n are heaps
DownHeap(A, i, n)

CSE 2011
YORK ' -28 - Last Updated: 1/28/10 10:10 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Recursive MakeHeap

Get help from friends

CSE 2011
YNOBK ' -29 - Last Updated: 1/28/10 10:10 AM
. ERsirt Prof. J. Elder

VVVVVVVVVV

Recursive MakeHeap

MakeHeap(A, i, n) Invoke as MakeHeap (A, 1, n)
<pre-cond>:A[i...n] is a balanced binary tree
<post-cond>: The subtree rooted at / is a heap
if i<|n/4| then
MakeHeap(A,LEFT(i),n)
MakeHeap(A,RIGHT (i), n)
Downheap(A4, i, n)

Running time:

T(n) = 2T(n/2) + log(n)

|n/4] is grandparent of n

|n/2] is parent of n

CSE 2011
YORKB -30- Last Updated: 1/28/10 10:10 AM

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

lterative vs Recursive MakeHeap

» Recursive and Iterative MakeHeap do essentially the
same thing: Heapify from bottom to top.

» Difference:
U Recursive is “depth-first”

O Iterative Is “breadth-first”

CSE 2011
YORKB _31- Last Updated: 1/28/10 10:10 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Adaptable Priority
Queues

CSE 2011
YNOBK ' -32- Last Updated: 1/28/10 10:10 AM
EEEEE Prof. J. Elder

VVVVVVVVVV

Recall the Entry and Priority Queue ADTs

» An entry stores a (key,
value) pair within a data
structure

» Methods of the entry
ADT:

dkey(): returns the key
associated with this
entry

dvalue(): returns the value
paired with the key
associated with this
entry

YORK ' CSE 2011 s

““““““““““ Prof. J. Elder

» Priority Queue ADT:

dinsert(k, x)
Inserts an entry with
key k and value x

dremoveMin()
removes and returns
the entry with
smallest key

dmin()
returns, but does not
remove, an entry
with smallest key

dsize(), isEmpty()

Last Updated: 1/28/10 10:10 AM

Motivating Example 5

» Suppose we have an online trading system where orders to
purchase and sell a given stock are stored in two priority queues
(one for sell orders and one for buy orders) as (p,s) entries:

O The key, p, of an order is the price
O The value, s, for an entry is the number of shares

O A buy order (p,s) is executed when a sell order (p’,s’) with price
p’<p is added (the execution is complete if s’>s)

O A sell order (p,s) is executed when a buy order (p’,s’) with price
p’>p is added (the execution is complete if s’>s)

» What if someone wishes to cancel their order before it
executes?

» What if someone wishes to update the price or number of
shares for their order?

CSE 2011
UYNOEBSKE ' Prof. J. Elder - 34 - Last Updated: 1/28/10 10:10 AM

Additional Methods of the Adaptable Priority Queue ADT

» remove(e). Remove from P and return entry e.

» replaceKey(e,k): Replace with k and return the old key;
an error condition occurs If k is invalid (that is, k cannot
be compared with other keys).

» replaceValue(e,x): Replace with x and return the old
value.

CSE 2011
YORK ' -35- Last Updated: 1/28/10 10:10 AM
“““““““““ Prof. J. Elder

lllllllllll

Example

YORK

EEEEEEEEEEE

Operation Output P
iInsert(5,A) e (5,A)
iInsert(3,B) e, (3,B),(5,A)
insert(7,C) e, (3,B),(5,A),(7,C)
min() e, (3,B),(5,A),(7,C)
key(e,) 3 (3,B).(5.4),(7,C)
remove(e,) e (3,B),(7,C)
replaceKey(e,,9) 3 (7,0),(9,B)
replaceValue(e;,D) C (7,D),(9,B)
remove(e,) e, (7,D)

§ cseeom 36 Last Updated: 1/28/10 10:10 AM

Prof. J. Elder

Locating Entries

» In order to implement the operations remove(k),
replaceKey(e), and replaceValue(k), we need fast ways
of locating an entry e in a priority queue.

» We can always just search the entire data structure to

find an entry e, but there are better ways for locating
entries.

CSE 2011
UYNOEBSKE ' Prof. J. Elder - 37 - Last Updated: 1/28/10 10:10 AM

Location-Aware Entries

» A locator-aware entry identifies and tracks the
location of its (key, value) object within a data
structure

CSE 2011
UYNQBSKE ' Prof. J. Elder -38 - Last Updated: 1/28/10 10:10 AM

List Implementation

» A location-aware list entry is an object storing
O key
 value
[position (or rank) of the item in the list

» In turn, the position (or array cell) stores the entry
» Back pointers (or ranks) are updated during swaps

nodes/p05|t|ons| trailer

\
|
|
|
|
|
|
|

entries |

N -

CSE 2011
YORK ' -39 - Last Updated: 1/28/10 10:10 AM
“““““““““ Prof. J. Elder

lllllllllll

Heap Implementation

» A location-aware heap
entry is an object storing

d key
O value

O position of the entry in the
underlying heap

» In turn, each heap position
stores an entry

» Back pointers are updated
during entry swaps

YORK ' CSE 2011

““““““““ : Prof. J. Elder

VVVVVVVVVV

2|d
6(b
8|d 5|e 91c
-40 - Last Updated: 1/28/10 10:10 AM

Performance

» Times better than those achievable without location-aware

entries are highlighted in red:

Method

size, iISsEmpty
iInsert

min
removeMin
remove
replaceKey

replaceValue

YORK ' CSE 2011

““““““““““ Prof. J. Elder

Unsorted List

O(1)
O(1)
O(n)
O(n)
O(1)
O(1)
O(1)

- 41 -

Sorted List

O(1)
O(n)
O(1)
O(1)
O(1)
O(n)
O(1)

Heap
O(1)
O(log n)
O(1)
O(log n)
O(log n)
O(log n)
O(1)

Last Updated: 1/28/10 10:10 AM

