# **Priority Queues & Heaps**

Chapter 8



#### The Java Collections Framework (Ordered Data Types)



# The Priority Queue Class

- Based on priority heap
- Elements are prioritized based either on
  - natural order
  - □ a **comparator**, passed to the constructor.
- Provides an iterator

# **Priority Queue ADT**

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT

□ insert(k, x) inserts an entry with key k and value x

**removeMin()** removes and returns the entry with smallest key

Additional methods

□ min() returns, but does not remove, an entry with smallest key

- □ size(), isEmpty()
- > Applications:
  - Process scheduling
  - Standby flyers



### **Total Order Relations**

- Keys in a priority queue can be arbitrary objects on which an order is defined
- Two distinct entries in a priority queue can have the same key

➤ Mathematical concept of total order relation ≤

Reflexive property:  $x \le x$ 

- Antisymmetric property:  $x \le y \land y \le x \Rightarrow x = y$
- Transitive property:  $x \le y \land y \le z \Rightarrow x \le z$

# **Entry ADT**

- An entry in a priority queue is simply a keyvalue pair
- > Methods:
  - key(): returns the key for this
    entry
  - value(): returns the value for this entry

- As a Java interface: /\*\*
  - \* Interface for a key-value
    \* pair entry
    \*\*/
    public interface Entry {
     public Object key();
     public Object value();

}

# **Comparator ADT**

- A comparator encapsulates the action of comparing two objects according to a given total order relation
- > A generic priority queue uses an auxiliary comparator
- The comparator is external to the keys being compared
- When the priority queue needs to compare two keys, it uses its comparator
- > The primary method of the Comparator ADT:
  - **compare**(a, b):
    - ♦ Returns an integer *i* such that
      - ♦ i < 0 if a < b</p>
      - ✤ i = 0 if a = b
      - ✤ i > 0 if a > b
      - ✤ an error occurs if a and b cannot be compared.



CSE 2011 Prof. J. Elder

# **Example Comparators**

- 8 -

```
/** Comparator for 2D points under the
   standard lexicographic order. */
public class Lexicographic implements
   Comparator {
  int xa, ya, xb, yb;
  public int compare(Object a, Object b)
   throws ClassCastException {
    xa = ((Point2D) a).getX();
    ya = ((Point2D) a).getY();
    xb = ((Point2D) b).getX();
    yb = ((Point2D) b).getY();
    if (xa != xb)
          return (xb - xa);
    else
          return (yb - ya);
```

**CSE 2011** 

Prof. J. Elder

```
/** Class representing a point in the 
plane with integer coordinates */
public class Point2D
   protected int xc, yc; // coordinates
   public Point2D(int x, int y) {
     XC = X;
     yc = y;
  }
   public int getX() {
            return xc;
   public int getY() {
            return yc;
```

Last Updated: 1/28/10 10:10 AM

#### Sequence-based Priority Queue

Implementation with an unsorted list



- Performance:
  - ❑ insert takes O(1) time since we can insert the item at the beginning or end of the sequence
  - removeMin and min take O(n) time since we have to traverse the entire sequence to find the smallest key

Implementation with a sorted list



- Performance:
  - □ **insert** takes *O*(*n*) time since we have to find the right place to insert the item
  - removeMin and min take
    O(1) time, since the smallest key is at the beginning

#### Is this tradeoff inevitable?



CSE 2011 Prof. J. Elder

# Heaps

#### ➤ Goal:

□ O(log n) insertion

O(log n) removal

 $\triangleright$  Remember that O(log n) is almost as good as O(1)!

□ e.g., n = 1,000,000,000 → log n ≅ 30

> There are min heaps and max heaps. We will assume min heaps.



# Min Heaps

A min heap is a binary tree storing keys at its nodes and satisfying the following properties:

□ Heap-order: for every internal node v other than the root

 $\Rightarrow key(v) \ge key(parent(v))$ 

□ (Almost) complete binary tree: let *h* be the height of the heap

♦ for i = 0, ..., h - 1, there are  $2^i$  nodes of depth i

 $\diamond$  at depth *h* - 1



# Height of a Heap

> Theorem: A heap storing n keys has height  $O(\log n)$ 

Proof: (we apply the complete binary tree property)

□ Let *h* be the height of a heap storing *n* keys

□ Since there are  $2^i$  keys at depth i = 0, ..., h - 1 and at least one key at depth h, we have  $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$ 

**Thus**,  $n \ge 2^h$ , i.e.,  $h \le \log n$ 



# Heaps and Priority Queues

- We can use a heap to implement a priority queue
- > We store a (key, element) item at each internal node
- We keep track of the position of the last node
- For simplicity, we will typically show only the keys in the pictures



#### Insertion into a Heap

- Method insert of the priority queue ADT involves inserting a new entry with key k into the heap
- The insertion algorithm consists of two steps
  - Store the new entry at the next available location
  - Restore the heap-order property



# Upheap

- After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- > Since a heap has height  $O(\log n)$ , upheap runs in  $O(\log n)$  time



# Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
  - Replace the root key with the key of the last node w
  - Remove w
  - Restore the heap-order property



- 16 -

# Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Note that there are, in general, many possible downward paths which one do we choose?





# Downheap

- > We select the downward path through the **minimum-key** nodes.
- Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- > Since a heap has height  $O(\log n)$ , downheap runs in  $O(\log n)$  time



# **Array-based Heap Implementation**

- > We can represent a heap with n keys by means of an array of length n + 1
- Links between nodes are not explicitly stored
- $\succ$  The cell at rank 0 is not used
- The root is stored at rank 1.
- For the node at rank i
  - $\Box$  the left child is at rank 2*i*
  - $\Box$  the right child is at rank 2i + 1
  - □ the parent is at rank floor(i/2)
  - $\Box$  if 2i + 1 > n, the node has no right child
  - □ if 2i > n, the node is a leaf



# Merging Two Heaps

- We are given two heaps and a new key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heaporder property



### **Bottom-up Heap Construction**

- We can construct a heap storing *n* keys using a bottom-up construction with log *n* phases
- In phase *i*, pairs of heaps with 2<sup>i</sup>-1 keys are merged into heaps with 2<sup>i+1</sup>-1 keys







# Example (contd.)



# Example (contd.)





# Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- Thus, bottom-up heap construction runs in O(n) time
- $\succ$  Bottom-up heap construction is faster than *n* successive insertions (running time ?).



Prof. J. Elder

# **Bottom-Up Heap Construction**

- Uses downHeap to reorganize the tree from bottom to top to make it a heap.
- > Can be written concisely in either recursive or iterative form.



# **Iterative MakeHeap**

```
MakeHeap(A, n)

<pre-cond>:A[1...n] is a balanced binary tree

<post-cond>:A[1...n] is a heap

for i \leftarrow \lfloor n/2 \rfloor downto 1

<LI>: All subtrees rooted at i + 1...n are heaps

DownHeap(A, i, n)
```



# **Recursive MakeHeap**

# Get help from friends





#### **Recursive MakeHeap**





### Iterative vs Recursive MakeHeap

Recursive and Iterative MakeHeap do essentially the same thing: Heapify from bottom to top.

> Difference:





# Adaptable Priority Queues





CSE 2011 Prof. J. Elder

# Recall the Entry and Priority Queue ADTs

- An entry stores a (key, value) pair within a data structure
- Methods of the entry ADT:
  - key(): returns the key associated with this entry
  - value(): returns the value paired with the key associated with this entry

Priority Queue ADT:

insert(k, x)
inserts an entry with
key k and value x

removeMin()
removes and returns
the entry with
smallest key

min() returns, but does not remove, an entry with smallest key

line size(), isEmpty()

# **Motivating Example**



Suppose we have an online trading system where orders to purchase and sell a given stock are stored in two priority queues (one for sell orders and one for buy orders) as (p,s) entries:

□ The key, p, of an order is the price

□ The value, s, for an entry is the number of shares

- A buy order (p,s) is executed when a sell order (p',s') with price p's)
- A sell order (p,s) is executed when a buy order (p',s') with price p'>p is added (the execution is complete if s'>s)
- What if someone wishes to cancel their order before it executes?
- What if someone wishes to update the price or number of shares for their order?

#### Additional Methods of the Adaptable Priority Queue ADT

- remove(e): Remove from P and return entry e.
- replaceKey(e,k): Replace with k and return the old key; an error condition occurs if k is invalid (that is, k cannot be compared with other keys).
- replaceValue(e,x): Replace with x and return the old value.

| Example |   |
|---------|---|
| Output  | Р |

| insert(5,A)             | <i>e</i> <sub>1</sub> | (5,A)                         |
|-------------------------|-----------------------|-------------------------------|
| insert(3,B)             | <i>e</i> <sub>2</sub> | (3,B),(5,A)                   |
| insert(7,C)             | <i>e</i> <sub>3</sub> | (3,B),(5,A),(7,C)             |
| min()                   | $e_2$                 | (3,B),(5,A),(7,C)             |
| $key(e_2)$              | 3                     | (3,B),(5,A),(7,C)             |
| remove( $e_1$ )         | $e_1$                 | (3, <i>B</i> ),(7, <i>C</i> ) |
| replaceKey( $e_2$ ,9)   | 3                     | (7 <i>,C</i> ),(9 <i>,B</i> ) |
| replaceValue( $e_3$ ,D) | С                     | (7 <i>,D</i> ),(9 <i>,B</i> ) |
| remove( $e_2$ )         | $e_2$                 | (7 <i>,</i> D)                |

**Operation** 

# **Locating Entries**

- In order to implement the operations remove(k), replaceKey(e), and replaceValue(k), we need fast ways of locating an entry e in a priority queue.
- We can always just search the entire data structure to find an entry e, but there are better ways for locating entries.

### **Location-Aware Entries**

A locator-aware entry identifies and tracks the location of its (key, value) object within a data structure



### List Implementation

A location-aware list entry is an object storing
 key

value

position (or rank) of the item in the list

> In turn, the position (or array cell) stores the entry

Back pointers (or ranks) are updated during swaps



# Heap Implementation

- A location-aware heap entry is an object storing
  - 🛛 key
  - value
  - position of the entry in the underlying heap
- In turn, each heap position stores an entry
- Back pointers are updated during entry swaps



# Performance

Times better than those achievable without location-aware entries are highlighted in red:

| Method        | <b>Unsorted List</b> | Sorted List  | Heap         |
|---------------|----------------------|--------------|--------------|
| size, isEmpty | <i>O</i> (1)         | <i>O</i> (1) | <i>O</i> (1) |
| insert        | <i>O</i> (1)         | O(n)         | $O(\log n)$  |
| min           | O(n)                 | <i>O</i> (1) | <i>O</i> (1) |
| removeMin     | O(n)                 | <i>O</i> (1) | $O(\log n)$  |
| remove        | <i>O</i> (1)         | <i>O</i> (1) | $O(\log n)$  |
| replaceKey    | <i>O</i> (1)         | O(n)         | $O(\log n)$  |
| replaceValue  | <i>O</i> (1)         | <i>O</i> (1) | <b>O</b> (1) |

